If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52x^2-24x=0
a = 52; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·52·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*52}=\frac{0}{104} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*52}=\frac{48}{104} =6/13 $
| 7v(-4v^2)=0 | | -15/4=1/3x | | n-9/5=-34/5 | | 2n^2=-3 | | -30x=-27-63 | | 1.2=2.4-b | | -5/3(4/3k+8/5)=31/4k-53/6 | | 10^-x=7^5x | | 65/n=5 | | 6n^2=12n | | 3x^2/x^2-16=0 | | 2p+4p=6= | | 15x=-3335x=115 | | -14=4m+5 | | (2-u)(5u+3)=0 | | 27=9^-x-3 | | 0=1/5x+7 | | 81-12x=9 | | Y=2500x10^30 | | 16-2n=8+4(n-3) | | 5x/8+5x/4=15 | | 3/(x-3)=(-3)/(x+6)+21/((x-3)(x+6)) | | 10x-6+2x+90=180 | | n+33/5=-1 | | 7x-2x=-2005= | | -13=1+6n+n | | 7x-2(3+4x=19 | | 19-6w+10=15 | | 2/3k=-12 | | -3x+7-6(x-1)=-(2x-3)-6x+6 | | x=1500(1.074)^5 | | 3(2x+4=6(5x+2 |